Skip to main content

Introduction to LS-DYNA

Objective

Learn how to run LS-DY­NA to solve en­gi­neer­ing prob­lems. De­tailed de­scrip­tions are giv­en of the da­ta re­quired to run LS-DY­NA analy­sis. Ex­am­ples are used to il­lus­trate the points made in the lec­tures.

Audience

This course is rec­om­mend­ed for en­gi­neers who want to use LS-DY­NA to per­form non­lin­ear sta­t­ic and dy­nam­ic im­pact sim­u­la­tions. En­gi­neers work­ing in the aero­space, au­to­mo­tive, and civ­il, man­u­fac­tur­ing, pack­ag­ing in­dus­tries and gov­ern­ment or­ga­ni­za­tions will ben­e­fit from this course. This course is use­ful for en­gi­neers and re­searchers who are work­ing in the area of de­for­ma­tion and strength of isotrop­ic, com­pos­ite, and most com­mon ma­te­ri­als as well as those who are work­ing on bio­me­chan­ics prob­lems.

Notes

In­tro to LS-DY­NA In­struc­tors: De­pend­ing on dates will be ei­ther Dr. Ala (Al) Tabiei Or Pro­fes­sor John Reid or LSTC in­struc­tors. Lec­tures be­gin dai­ly at 9:00 a.m. and run un­til 5:00 p.m., ex­cept for the last day when the course con­cludes at 12:00 p.m. The class­room ma­chines are PCs run­ning Lin­ux (CA) or Win­dows (MI).

It is high­ly rec­om­mend­ed that users take the LS-Pre­Post class as it will be used as part of this class.

For in­for­ma­tion on the class­es con­tact class@lstc.com

Contents

  • Course Out­line
  • His­to­ry
  • Fi­nite El­e­ment Sim­u­la­tion
    • Sam­ple LS-DY­NA Con­fer­ence Pre­sen­ta­tions
    • Sam­ple Sim­u­la­tions
  • FE Analy­sis (pre­proces­sors, solver, post­proces­sors)
  • De­tails of an Ex­am­ple (Tube Col­lapse)
    • LS-DY­NA Deck
    • Us­ing LS-POST
    • De­tails of Post­pro­cess­ing
  • De­tailed Ca­pa­bil­i­ties-Key­word For­mat
  • Ma­te­r­i­al Non­lin­ear­i­ty
  • Run­ning LS-DY­NA
    • Ex­e­cu­tion and Out­put Files
      • ASCII
      • Bi­na­ry
  • Out­put Con­trol
  • FE Mod­el­ing Tech­niques
    • En­gi­neer­ing a FEA Mod­el
    • El­e­ment Se­lec­tion
      • Dis­crete (for­mu­la­tion of elas­tic and non­lin­ear elas­tic spring)
      • Beam
      • Shell (de­scrip­tion of the var­i­ous shell for­mu­la­tions)
      • Sol­id (de­scrip­tion of the var­i­ous sol­id for­mu­la­tions)
      • Thick Shell
    • Bound­ary, and Ini­tial Con­di­tions, Sym­me­try
    • Mod­el­ing for Phys­i­cal Phe­nom­e­non
    • Ad-Hoc Guide­lines
    • How to Tell if your Re­sults are Cor­rect
      • Er­ror, de­bug­ging, and oth­er use­ful in­for­ma­tion (d3hsp)
  • Time In­te­gra­tion
    • The Equa­tions of Mo­tion
      • Im­plic­it
      • Ex­plic­it
  • Ex­plic­it Time In­te­gra­tion
    • Time Step Cal­cu­la­tion
  • Re­duce–Se­lec­tive In­te­gra­tion
  • Hour­glass Phe­nom­e­non
  • Con­tact and Slide Sur­faces
    • Fric­tion
  • Damp­ing
  • Restart
  • Qua­si-Sta­t­ic Sim­u­la­tions
    • Why Sta­t­ic Analy­sis With Ex­plic­it Code
      • Mass Scal­ing