Skip to main content

Concrete & Geomaterial Modeling with LS-DYNA®


  • Dr. Len Schw­er

Concrete & Geomaterial Modeling with LS-DYNA®


You should be fa­mil­iar with LS-DY­NA.


Con­sti­tu­tive mod­els for con­crete and ge­o­ma­te­ri­als (rocks and soil) are typ­i­cal­ly based on the same math­e­mat­i­cal plas­tic­i­ty the­o­ry frame­work used to mod­el com­mon met­als. How­ev­er, the con­sti­tu­tive be­hav­ior of con­crete and ge­o­ma­te­ri­als dif­fers from that of met­als in three im­por­tant ways:

  1. They are (rel­a­tive­ly) high­ly com­press­ible,that is, a pres­sure-vol­ume re­sponse;
  2. Their yield strength de­pends on the mean stress (pres­sure), that is, a fric­tion­al re­sponse; and
  3. Their ten­sile strengths are small com­pared to their com­pres­sive strengths.

These ba­sic dif­fer­ences give rise to in­ter­est­ing as­pects of con­sti­tu­tive mod­el­ing that may not be fa­mil­iar to en­gi­neers trained in clas­si­cal met­al plas­tic­i­ty.

This course starts from the com­mon ground of in­tro­duc­to­ry met­al plas­tic­i­ty con­sti­tu­tive mod­el­ing and suc­ces­sive­ly builds on this base by adding the con­sti­tu­tive mod­el­ing fea­tures nec­es­sary to mod­el con­crete and ge­o­ma­te­ri­als. The LS-DY­NA con­sti­tu­tive mod­els cov­ered are ad­e­quate for mod­el­ing most types of rock, all con­cretes, and a large class of soils. This course is in­tend­ed for those new to con­crete and ge­o­ma­te­r­i­al con­sti­tu­tive mod­el­ing but will al­so be use­ful to those seek­ing a more in-depth ex­pla­na­tion of the LS-DY­NA con­crete and ge­o­ma­te­r­i­al con­sti­tu­tive mod­els cov­ered.

A sig­nif­i­cant por­tion of the course is de­vot­ed to un­der­stand­ing the types of lab­o­ra­to­ry tests and da­ta that are avail­able to char­ac­ter­ize con­crete and ge­o­ma­te­ri­als. Un­like most met­als, whose strength is char­ac­ter­ized by a sin­gle val­ue ob­tained from a sim­ple uni­ax­i­al stress test, con­crete and ge­o­ma­te­r­i­al char­ac­ter­i­za­tion re­quires a ma­trix of lab­o­ra­to­ry tests. Knowl­edge of how these tests are per­formed, the form and for­mat of typ­i­cal lab­o­ra­to­ry test da­ta, and the in­ter­pre­ta­tion of the da­ta for use with a con­crete or ge­o­ma­te­r­i­al con­sti­tu­tive mod­el, is es­sen­tial to be­com­ing a suc­cess­ful con­crete and ge­o­ma­te­r­i­al mod­el­er.

The ba­sic math­e­mat­ics of the LS-DY­NA con­crete and ge­o­ma­te­ri­als con­sti­tu­tive mod­els are cov­ered, with an em­pha­sis on how the math­e­mat­ics can aid the mod­el­er in fit­ting con­sti­tu­tive mod­els to the avail­able lab­o­ra­to­ry da­ta. The me­chan­ics of the con­sti­tu­tive mod­el are em­pha­sized to pro­vide the mod­el­er with the in­sights nec­es­sary to eas­i­ly sep­a­rate cause and ef­fect in these com­pli­cat­ed con­sti­tu­tive mod­els. Ex­er­cis­es in fit­ting the LS-DY­NA con­crete and ge­o­ma­te­r­i­al con­sti­tu­tive mod­els to typ­i­cal lab­o­ra­to­ry da­ta are used to il­lus­trate the da­ta and the con­sti­tu­tive mod­els.

Sev­er­al ap­pli­ca­tion case stud­ies are cov­ered:

  1. qua­si-sta­t­ic soil pen­e­tra­tion,
  2. qua­si-sta­t­ic ec­cen­tric load­ing of a re­in­forced con­crete col­umn,
  3. pen­e­tra­tion of a con­crete tar­get us­ing La­grange with ero­sion, Euler­ian, and SPH for­mu­la­tions, and
  4. blast load­ing of a re­in­forced con­crete slab mod­eled with sev­er­al con­crete mod­els.


Day 1

  1. In­tro­duc­tion to Met­al Plas­tic­i­ty
    1. Nomen­cla­ture
    2. von Mis­es Con­sti­tu­tive Mod­el (*MAT_­003)
    3. Per­fect Plas­tic­i­ty and Hard­en­ing
    4. Overview of a Nu­mer­i­cal Con­sti­tu­tive Mod­el Al­go­rithm
    5. Tresca Yield Cri­te­ri­on
    6. De­scrip­tion of the Pi-Plane
    7. Two Spe­cial Lim­it­ing Cas­es for the Lode An­gle
  2. In­tro­duc­tion to Ge­o­ma­te­ri­als
    1. Com­press­ibil­i­ty: the Pres­sure – Vol­ume Re­sponse
    2. Pres­sure En­hanced Shear Strength – Fric­tion­al Ma­te­ri­als
    3. Mohr-Coulomb Fail­ure Cri­te­ria
    4. MAT_­SOIL_­AND_­FOAM (*MAT_­005)
  3. Ma­te­r­i­al Char­ac­ter­i­za­tion - Lab­o­ra­to­ry Tests & Da­ta
    1. Hy­dro­sta­t­ic Com­pres­sion Test­ing
    2. Tri-Ax­i­al Com­pres­sion Test­ing
    3. Oth­er Use­ful Ma­te­r­i­al Tests
  4. Case Study – Cal­i­brat­ing the Soil & Foam Con­sti­tu­tive Mod­el (*MAT_­005) to Low & High Pres­sure Soil Da­ta
  5. Case Study – Qua­si-Sta­t­ic Soil Pen­e­tra­tion
  6. MAT_­PSUE­DO_­TEN­SOR (*MAT_­016)

Day 2

  1. Sim­ple In­put Con­crete Mod­els
  2. The fol­low­ing sin­gle pa­ra­me­ter (un­con­fined com­pres­sion strength) mod­els are com­pared with lab­o­ra­to­ry da­ta:
    1. *MAT_­PSEU­DO_­TEN­SOR (Mode II Con­crete) [*MAT_­016]
    2. *MAT_­CON­CRETE_­DAM­AGE_­REL3 [*MAT_­072R3]
    3. *MAT_­WIN­FRITH_­CON­CRETE [*MAT_­085]
    4. *MAT_­CSCM_­CON­CRETE [*MAT_­159]
    5. *MAT_­RHT [*MAT_­272]
    6. *MAT_­CDPM [*MAT_­273]
  3. Case Study – Re­in­forced Con­crete Col­umn Ec­cen­tric Load­ing
  4. Case Study – Brick Wall Per­fo­ra­tion
  5. Case Study – Con­crete Tar­get Per­fo­ra­tion us­ing La­grange with Ero­sion, Euler­ian, & SPH For­mu­la­tions
  6. Case Study – Re­in­forced Con­crete Slab un­der Blast Load­ing – Blind Blast Sim­u­la­tion Con­test
  7. Mod­el­ing Re­in­force­ment – In­clud­ing Pre and Post-Ten­sion­ing
  8. Win­frith Con­crete Mod­el – Crack Pat­terns
  9. Strain Rate Ef­fects – Much Ado About Noth­ing?
  10. In­tro­duc­tion to the LS-DY­NA Cap-Mod­els – Cal­i­brat­ing the Ge­o­log­i­cal Cap Mod­el (*MAT_­025)